Predictive Airspace Monitoring System

Drilliant Ltd. presents a unique solution for aviation professionals to monitor and predict airspace activity with high precision

May 2025

by Guy Soffer

System Overview

User-Defined Monitoring

Configure custom airspace regions for targeted missions, surveillance and analysis

Triple Mode Operation

Real-time tracking, 30-minute predictions, and historical data analysis in one system

Comprehensive Outputs

Load metrics, dynamic radar maps, detailed flight tables, and free time slot identification

System Inputs

Text file import of coordinate boundaries + manual editing

Air-Traffic Maps

Integration with DOD/Jeppesen resources for comprehensive coverage. Can be edited manually for "Directs"

Configuration Parameters

Set extension ranges, look-ahead, and look-back timeframes

Real-Time Data

Periodic B2B EuroControl queries for flight plans and waypoints

System Flow Architecture

EuroControl B2B

External data source providing real-time flight plans and airspace information

PAMS Processing

Agent-based modeling system analyzes traffic within regions of interest


Information Output

Crossing flight tables, free time slots, and visual radar displays

Dynamic Mapping

Integration with DOD/Jeppesen infrastructure for visual representation

Analysis Capabilities

Path Analysis

2-Waypoints path intersections with ROI are identified and processed

Waypoint Identification

System determines relevant waypoints for targeted B2B queries

Flight Information

Comprehensive data including ARCID, velocity, Depart/Dest. Airports, Flight-Level....

Visual Outputs

Dynamic traffic maps, Gantt charts, and

free time-slot analysis - integrating up to 4 User-Defined Regions

Key Features

Intuitive Interface

User-friendly design allows for quick setup and minimal training requirements

Precision Performance

High accuracy predictions ensure reliable airspace management

Rich Data Visualization

Multiple output formats including tables, timelines, and dynamic radar views

Temporal Flexibility

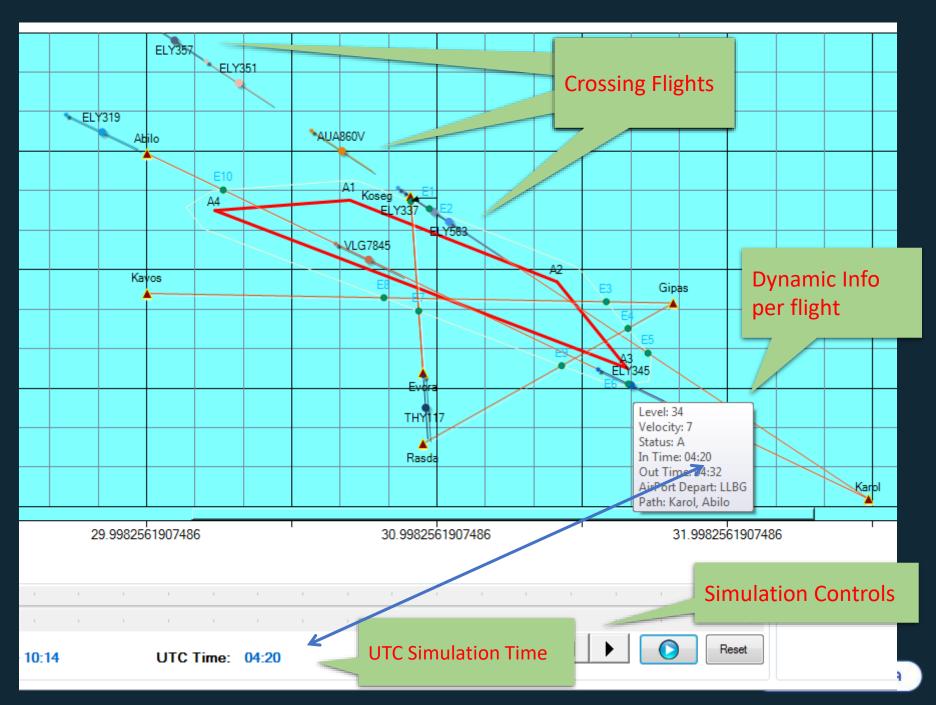
Seamlessly switch between predictive future and historical analysis modes

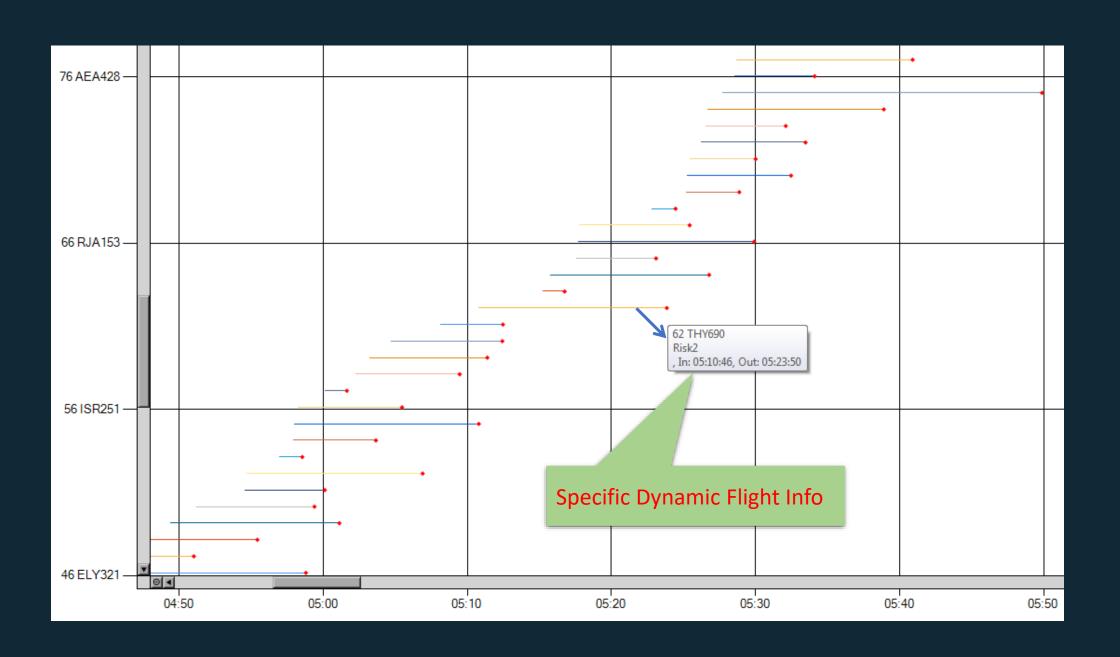
Future Development Roadmap

Our development pipeline focuses on expanding analytical capabilities while maintaining the system's core strengths in usability and accuracy

Screenshots

Dynamic View – "Radar"


Live Dynamic Map (Radar)
FF / REW / PLAY/ PAUSE



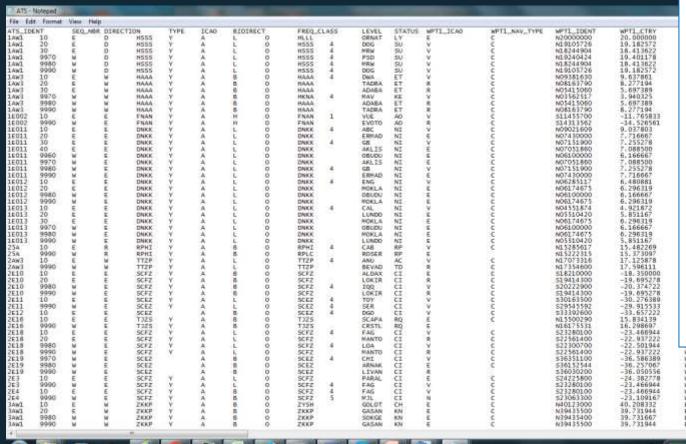
Crossing Flights - Data Table

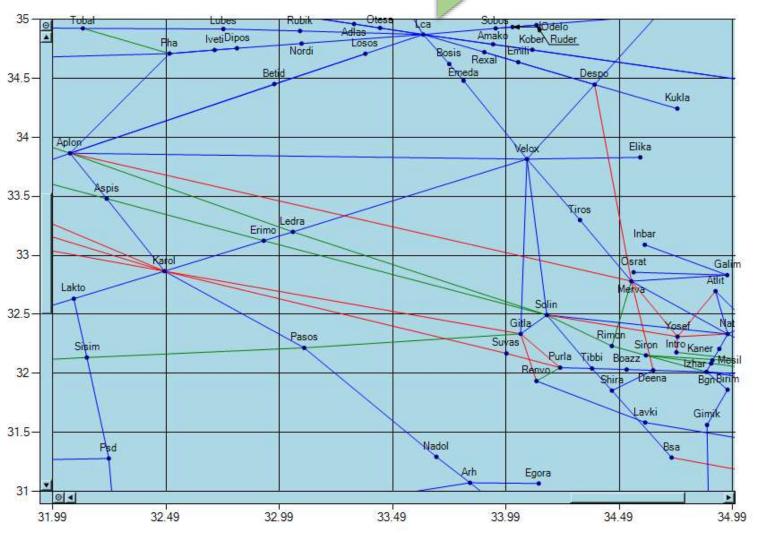

C	CID	S	ta	tus	S	Relevant Call Point			Enter/Depart Point Enter/Depart Time				V	Velocity		П	Flight Level		Airport Depart/Dest		
Are	a 2	Indows Rout	10	Ignore	d Rights												1				96.0
I	RightName	- Ignore	Statu	n Tac	tic Numb	x SatedReportedP	oa ExtinPo	i EdinTime	ExtOut	Pi ExtOutTi	me InPoin	N InTime	OutPo	int OutTime	AvgVeloci	. AvgFlight	u ArPorti	Pepat ArPortDest	InPritX	inPntY	OutPritX
1	AEA428	[2]	A	E	2	KAROL T: 05:22	Karol	05:22	Abilo	05:43	F5	05:28	F1	05:34	7.6	325	LLBG	LEBL	31 40 07	33 20 40	31 06 30
3	AEE929	121	A	E	2	KAROL T: 04.48	Karol	04:48	Abilo	05:09	F5	Deserve	F1	05:00	7.6	340	LLBG	LGAV	31 40 07	33 20 40	31 06 30
	AMC7829		A	E	2	KAROL T: 04:31	Karol	04:31	Guds	85:07	F6	04:36	PI	nerd	7.3	351.333	LLBG	LMML	31 43 00	33 07 59	29 34 56
3	AUA864J	- 11	A	E	2	ОТІКО Т. 13:50L.	Labra	13:54	Gude	14:16	F8	13:55	F11	14.08	123	340	HECA	LOWW	30 20 46	32 25 05	29 34 56
4	AZA809	E1	A	E	2	KAROL T: 03:02	Karol	03:02	Ablio	03:24	F5	03:08	F1	03:14	73	Taran	u				
1	AZABZ1	- 17	A	E	2	KAROL T: 03:48	Karol	03.48	Ablio	04:09	F5	03:54	F1	04:00	7.6	360	-	C	1:44	h.,	r: _1 _1
1	BGY1709		A	E	3	KOSEG T: 06:04.	Koseg	06:04	Meldo	06:21	F4	06:06	F9	06:18	7.9	350	EPI	Free Sort	LIST	by any	пеіа
1	BRU8213	- [7]	A	E	3	KOSEG T: 06:08	Koseg	06:08	Meldo	06.27	F4	06:10	F9	06.24	7.0	350	UM				
	DAZEM	- 1	A	E	2	OTIKO T: 08:42L	Labna	08:46	Guds	09:08	FB	08:47	F11	09:00	12.3	380	HECA	EDOB	30 20 46	32 25 05	29 34 56
	DLH583	- 10	A	E	2	OTIKO T. 14:28L	Labna	14:32	Gude	14:54	F8	14:33	F11	14.46	12.3	340	HECA	EDOF	30 20 46	32 25 05	29 34 56
	ELY319	10	A	E	2	KAROL T: 03:59.	Karol	03:59	Ablio	04:19	FS	04.05	FT	04:10	8.0	376	LLBG	LFPG	31 40 07	33 20 40	31 06 30
	ELY321	- 13	A	E	2	KAROL T: 04:39.	Karol	04:39	Abilo	05:01	F5	04:45	F1	04.51	7.2	340	LLBG	LFML	31 40 0	A / . L	
	ELY345	10	A	E	2	KAROL T: 04:13	Karol	04:13	Ablio	04:35	F5	04:19	FI	04:25	7.2	340	LLBG	LSGG	31 40 8	Velocit	.V
1	ELY381	10	A.	E	2	KAROL T: 05:20.	Karol	05:20	Abilio	85:41	F5	05:26	F1	05:32	7.6	370	LLBG	LIMC	31 40 0		•
1	ELY385		A	E	2	KAROL T: 05:55.	Karol	05:55	Ablio	06:17	F5	06:01	F1	06:07	7.2	370	LLBG	LIRF		Warnir	Ιg
1	ELY393	10	Α	E	2	KAROL T: 06:38	Karol	06:38	Ablio	06:58	F5	06.44	F1	05:49	8.0	360	LLBG	LEBL	31 40 0-	90 60 90	0
	ELY395	13	A	E	2	KAROL T: 03:09.	Karol	03:09	Abilo	03:31	F5	03:15	FI	03:21	7.2	340	LLBG	-	31 40 07	33 20 40	31 06 30
1	ELY541	12	A	E	2	KAROL T: 04:51	Karol	04:51	Abilo	05:13	75	04.57	F1	05:03	7.2	340	LLBG	LGAV	31 40 07	33 20 40	31 06 30
	ENT4515		A	E	3	KOSEG T: 05:42	Koseg	05:42	Meido	06:00	F4	05:44	F9	05.57	7.5	330	EPFO	HEGN	30 55 45	33 45 26	31 02 12
	EZY19ND	-	A	E	2	ОТІКО Т. 17:07L.	Labna	17:12	Gude	17:35	F8	17:12	F11	17:26	11.4	340	HESH	EGGW	30 20 46	32 25 05	29 34 56
	GAF309		A	Ξ	3	GIPAS T 05:23R	Gpss	05.23	Meldo	05:54	F1	05:27	FB	05:49	48	192	TUBH	OEJN	31 30 33	33 29 07	21 92 12
	IBE3319	- 10	A	E	2	KAROL T: 03:51	Karol	03:51	Ablio	94:13	F5	03:57	FT	04:03	7.2	340	LLBG	LEMD	31 40 07	33 20 40	31 06 30
1	IFA3413		A-	E	2	ОТІКО Т: 09:37L.	Labna	09:42	Gude	10:08	F8	09:43	E11	09:58	10.2	400	HEGN	LOWW	30 20 46	32 25 05	29 34 56
1	ISF38GB	10	A	E	3	BLT T: 06:53ME	Meldo	06:57	Gipas	07:10	F9	06.58	F3	07.08	10.0	333,333	OAZI	LCRA	31 02 12	32 18 59	31 30 33
	ISS2719	- 1	A	E	2	KAROL T: 03:14.	Karol	83:14	Ablio	03:37	F5	03:21	F1	03.27	6.9	340	LLBG	LIPX	31 40 07	33 20 40	31 06 30
1	KNE671	- 13	A	E	2	KOSEG T. 04.43	Koseg	04:43	Meldo	05:00	F4	04.45	F9	04:57	7.9	290	LTFJ	OE/N	30 55 45	33 45 26	31 02 12
	LGL148	E	A	E	2	OTIKO T: 13:09L	Labra	13:14	Gude	13:37	F8	13:14	F11	13:28	11.4	380	HESH	ELIX	30 20 46	32 25 05	29 34 56
1	MSR725		A	E	2	OTIKO T: 09:01L	Labna	09.06	Gudir	09:28	FB	09:06	F11	05:20	11.8	340	HECA	EBBR	30 20 46	32 25 05	29 34 56
1	MSR711	E	A	E	2	ОТІКО Т. 89:88L	Labna	09:12	Guds	09:34	F8	09:13	F11	09:26	12.3	344	HECA	EDDB	30 20 46	32 25 05	29 34 56
Ī																					

Crossing Flights - Gantt

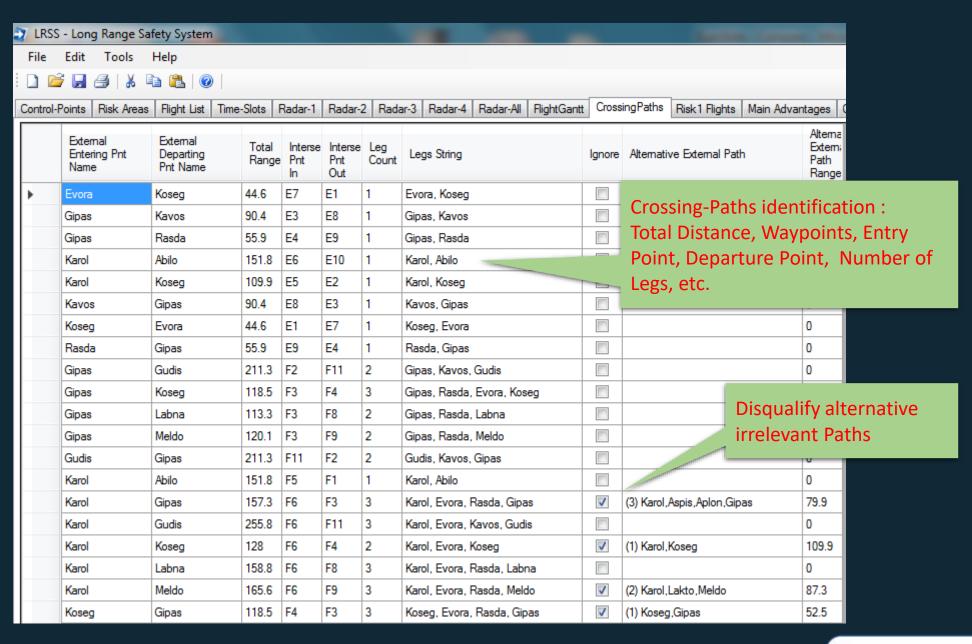
Free Time-Slots

Integration of up to 4 User-Defined Air-Regions


Red – Oneway North
Green – Oneway South
Blue – Two-Ways


Air-Traffic Infrastructure

Visual Map Two Modes:


Load DOD / Jeppesen File

Internal Editor: Edit Manually

Crossing Paths - Data Table

Intersection Points – Data Table

	External Point	Second Point	Intersect Pnt Name	Range to Enter	Intersect North	Intersect East
•	Koseg	Evora	E1	1.3	24 07 17	30 54 28
	Koseg	Karol	E2	4.5	34 05 26	30 58 17
	Gipas	Kavos	E3	11.5	33 41 54	31 34
	Gipas	Rasda	E4	10.1	33 35 08	31 39 18
	Karol	Koseg	E5	53	33 28 53	31 43 26
	Karol	Abilo	E6	50.7	33 21 05	31 39 24
	Evora	Koseg	E7	15.5	33 39 33	30 56 05
	Kavos	Gipas	E8	40.6	33 42 55	30 48 54
	Rasda	Gipas	E9	31	33 25 43	31 25 37
	Abilo	Karol	E10	15.9	34 10 11	30 15 43
	Abilo	Karol	F1	67.5	33 40 23	31 06 30
	Gipas	Kavos	F2	39	33 42 38	31 01 43
	Gipas	Rasda	F3	19.5	33 29 07	31 30 33
	Koseg	Evora	F4	23.1	33 45 26	30 55 45
	Karol	Abilo	F5	49.9	33 20 40	31 40 07
	Karol	Evora	F6	41.7	33 07 59	31 43 00
	Labna	Kumbi	F7	9.4	32 26 53	30 08 32
	Labna	Rasda	F8	6.4	32 25 05	30 20 46
	Meldo	Rasda	F9	17	32 18 59	31 02 12
	Kumbi	Labna	F10	42.9	33 11 12	29 19 47
	Gudis	Kavos	F11	98.2	33 53 00	29 34 56
	Kumbi	Labna	G1	103.2	32 26 53	30 08 32
	Rasda	Labna	G2	51	32 25 05	30 20 46
	Rasda	Meldo	G3	47.2	32 18 59	31 02 12
	Meldo	Rasda	G4	12.3	32 14 16	31 02 44
	Blt	Labna	G5	54.8	32 12 28	30 24 07
	Otiko	Labna	G6	48.4	32 13 21	30 10 28

Calculate:

- Distances TO/FROM Rol,
- Coordinates (N/E) of Enter/Depart points,
- Code-Name each point

Contact Drilliant Ltd.

100%

30min

Customization

Prediction Window

Fully tailored solutions for your specific airspace needs

Industry-leading forecasting capability

24/7

Technical Support

Round-the-clock assistance for critical operations

Questions? Our aviation systems specialists are ready to demonstrate how PAMS can transform your airspace management capabilities